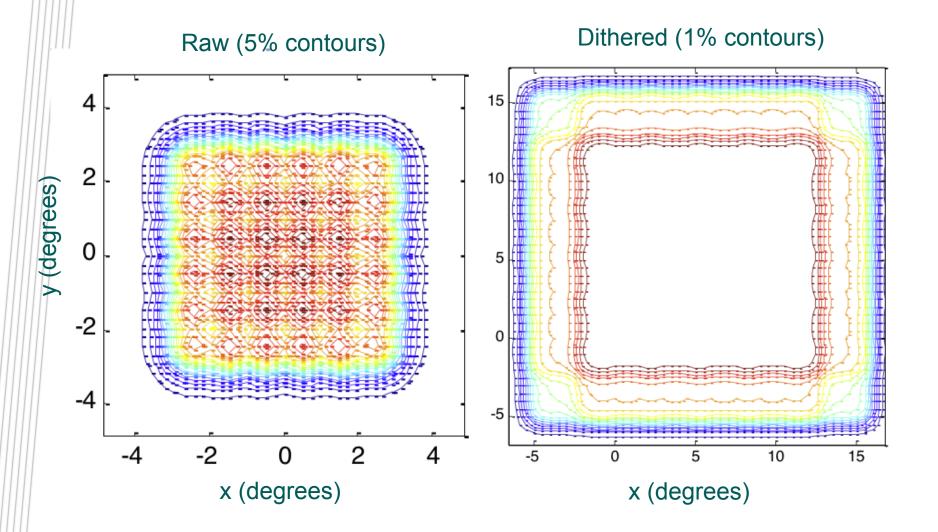
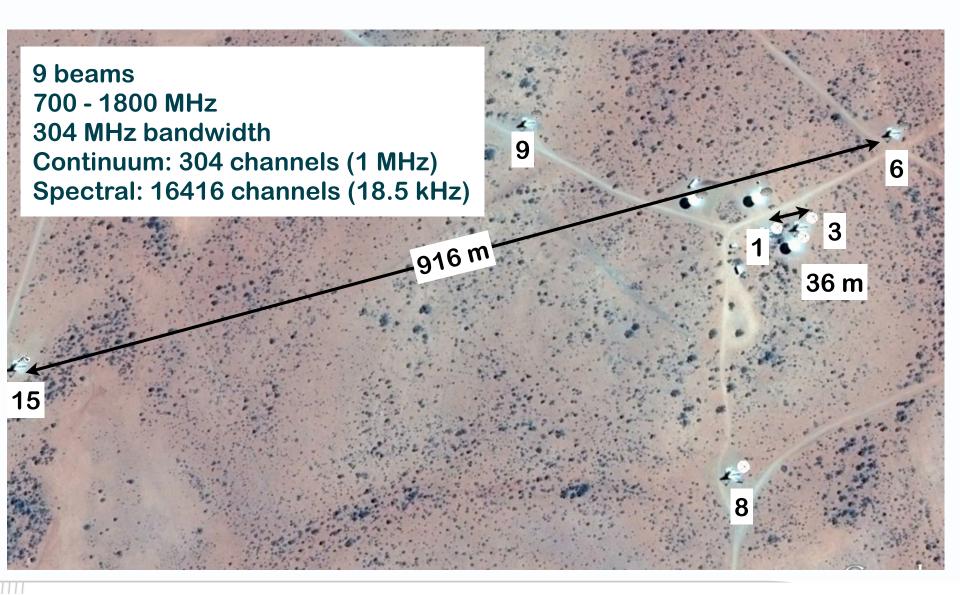

ASKAP-EMU Re-acceleration

ASKAP 188-element Phased Array Feed



Ground plane

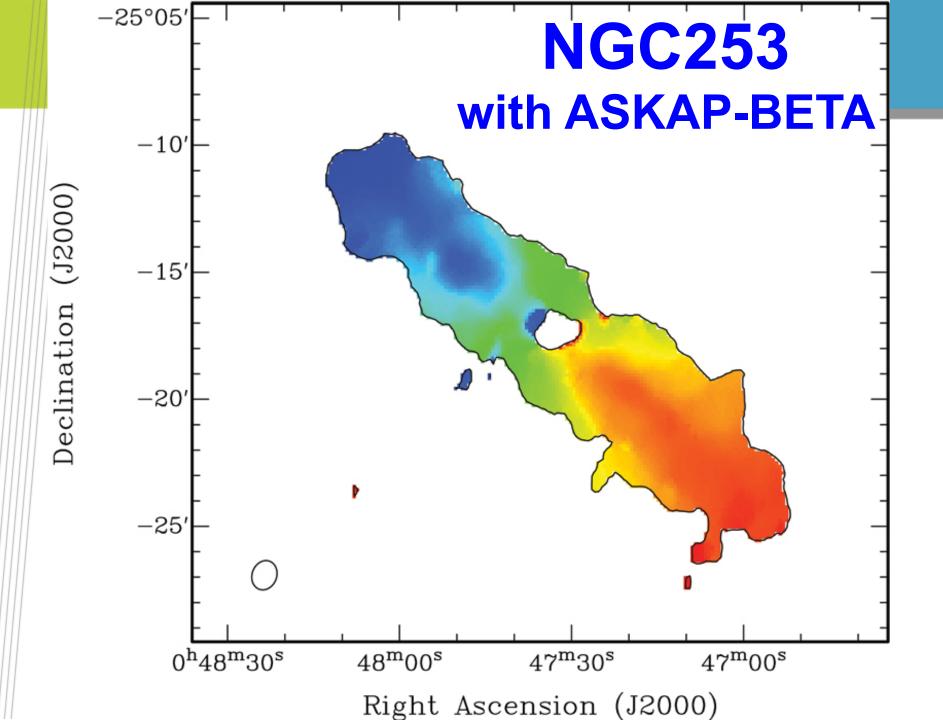
- Connected checkerboard array
- Self-complementary screen (
- Operating range defined by
 - 1800-700MHz
- LNA High-impedance, differential


ASKAP PAF footprint

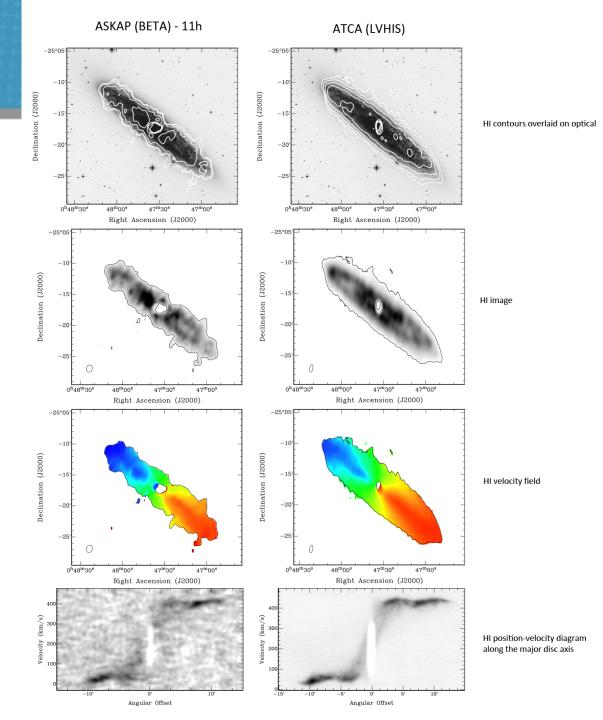
Current status

- 6-PAF-antenna BETA array currently operating with 9 beams
- Undergoing commissioning and debugging while final MkII (ADE PAFs are being built
- Expect to have first MkII PAF at MRO in ~ July 2014
- Expect to have 8 MkII PAFS installed by ~Feb 2015
- Currently doing BETA science

BETA the telescope



6-antenna BETA image with 9 PAF beams


1 degree

Ö

- 700 1000 MHz
- 12-hour observation with BETA
- min RMS = 125 μ Jy (on track for ~10 μ Jy for EMU!)
- Brightest source is 6.14 Jy,
- DR ~ 50,000 in the mosaic
- ~400 sources > 10σ

NGC 253

ASKAP early science, mid 2015 (see EMU memo 30)

- 12 antennas equipped with ADE PAFs, 2.4km max baseline
- Do early science while array is progressively upgraded with additional PAFs
- E.g. engineering in daytime, astronomy at night
- No "time allocation"
- Instead a unified ACES observing/commissioning team focussing on EMU/WALLABY science, but also bringing in other survey project science as appropriate (e.g. HI absorption, transients)

SENSITIVITY (AT 1.4 GHz)

- Thermal rms ~ 30 uJy in 12h, over a FOV of 30 sq deg.
- Beamsize ~ 25 arcsec
- Confusion noise ~ 25 uJy
- So image noise ~ 40 uJy
- So could do a hemisphere in 3 months to rms ~ 60 uJy

ASKAP continuum early science (see EMU memo 30)

Early Science focus: wideband over smaller area

- Focus on a smaller area (e.g. 1000 sq deg)
- Image from 700-1400 MHz
- Obtain a catalogue of ~1 million sources (nearly doubles no of know radio sources)
- Get accurate spectral index and Rotation Measures
- New science: first time anybody has produced a sensitive catalogue of accurate RMs and spectral indices
- Adds value to EMU, not superseded

ASKAP continuum early science (see EMU memo 30)

Questions

- What part(s) of the sky?
- What is optimum processing strategy when observing over an octave?

• Three processing pipelines:

- All band optimises dynamic range because of mfs
- Top of band optimises resolution
- Bottom of band optimises intrinsic sensitivity (but increases confusion noise)

ASKAP Science

38 proposals submitted to ASKAP

2 selected as being ∠ highest priority

8 others at a slightly lower priority • EMU all-sky continuum (PI Norris)

• WALLABY all-sky HI
 (PI Koribalski & Staveley-Smith)

- -• COAST pulsars etc
 - CRAFT fast variability
 - DINGO deep HI
 - FLASH HI absorption
 - GASKAP Galactic
 - POSSUM polarisation
 - VAST slow variability
 - VLBI

- Deep radio image of 75% of the sky (to declination +30°) Frequency range: 1100-1400 MHz
- 40 x deeper than NVSS
 - 10 µJy rms across the sky
- 5 x better resolution than NVSS (10 arcsec)
- Better sensitivity to extended structures than NVSS
- Will detect and image ~70 million galaxies at 20cm
- All data to be processed in pipeline
- Images, catalogues, cross-IDs, to be placed in public domain
- Survey starts 2016(?)
- Total integration time: ~1.5 years ?

Science Goals evolve 1) Evolution of SF from z=2 to the present day, using a wavelength unbiased by dust or molecular e 2) Evolution of massive black holes nerge? how come they arrived so early? How do bin what is their relationship to star-formation cosmological 3) Explore the large-scale struct parameters of the Universe E.g, Independent tests of de nodels **1** of observational parameter 4) Explore an unchart space w classes of object. almost certainly **J** Diffuse low-surface-brightness radio 5) Explore 🧲 object an Atlas of the Galactic Plane e a legacy for surveys at all velengths (Herschel, JWST, ALMA, etc)

Challenge: difficult to get redshifts, or even optical/IR photometry

Survey	Area	Wavelength	Limiting	EMU	Survey	Data
Name	(deg^2)	Bands	Mag.	Detected	Matched	Relea
	, -,		or flux ^a	(%)	(%)	Date
WISE ¹	40000	3.4, 4.6, 12, 22 $\mu {\rm m}$	$80\mu{ m Jy}$	23	100	2012
$Pan-Starrs^2$	30000	g,r,i,z,y	r < 24.0	54	50	2020
Wallaby ^{3,b}	30000	$20\mathrm{cm}$ (HI)	$1.6\mathrm{mJy^c}$	1	100	2013
$LSST^4$	20000	u,g,r,i,z,y	r < 27.5	96	67	2020
Skymapper ⁵	20000	u,v,g,r,i,z	r < 22.6	31	66	2015
VHS^{6}	20000	Y, J, H, K	K < 20.5	49	66	2012
$SDSS^7$	12000	u, g, r, i, z	r < 22.2	28	22	DR8
DES^8	5000	g,r,i,z,y	r < 25	71	17	2017
VST-ATLAS ⁹	4500	u,g,r,i,z	r < 22.3	30	15	2012?
Viking ¹⁰	1500	Y, J, H, K	K < 21.5	68	5	2012
Pan-Starrs $Deep^2$	1200	0.5-0.8, g, r, i, z, y	g < 27.0	57	4	2020

EMU Re-acceleration

Challenge

- All ASKAP survey projects have slowed because of delays in commissioning ASKAP – now back on track
- Some WG were not very effective
- We weren't effectively tapping into the 220 EMU members
- Have looked at structures of other large collaborations

Rest of this presentation is work in progress

your ideas and suggestions needed!

<u>Result</u>

- WGs will be largely replaced by "tasks"
 - May still need some WG
- Introduce incentive to active participation:
- "Key members" (better name?) require commitment but get more rewards

Three categories of EMU Papers

1) The survey definition paper (EMU paper 1).

2) EMU key papers

- · describe some aspect of the survey or its data,
- or present a key science result addressing an EMU science goal
- Titles of key papers start with "Evolutionary Map of the Universe x:" where x is a roman numeral

3) Other EMU papers, which have a title starting with "Evolutionary Map of the Universe" but don't have a roman numeral

We will make a call for proposals for papers:

- ASKAP early science (deadline 3 months)
- EMU key papers (deadline 1 year from now)
- EMU survey science (no deadline, but first come, first served)

Three types of EMU member

- Key members *drive* and take responsibility for the project/task that they've taken responsibility for, and commit to ~20% FTE through to project completion (negotiable)
- Core members have at some point made a significant contribution to EMU (e.g. chaired a WG)
- Other members have contributed in other ways
- Can anyone think of a better name? ③

Benefits of core/key members

• No EMU member will be on an EMU paper unless they contribute to it

Ordinary members

Are kept informed of EMU and can get involved in particular projects & papers

Core members

- have the right to be on any EMU paper provided they contribute significantly
- will be included as a co-author on the EMU survey definition paper

Key members

- have all the benefits of core members, plus:
- will be invited to be first author on an EMU key paper, or to nominate someone (e.g. their grad student or postdoc) to do so.
- will be asked to identify which key paper they would like to lead
- will be asked for input on key decisions

Examples of EMU key papers

- Survey definition paper. Describes the survey, design decisions, area of sky, uniformity, etc
 - Co-authors: every core member and key member, plus anybody else contributing.
- Source extraction, incl. noise properties, artefacts, and maybe a component count plot.
- Self-ID and cross-ID, incl source count plot
- Photo-z
- Extended source extraction
- Diffuse emission
- AGN/SF split
- Cosmic evolution of SF
- Cosmic evolution of AGN, including radio luminosity function
- Cosmic variance, source counts, P(D) analysis, Clusters in collaboration with eRosita (then spin off several non-key papers)
- Large-scale structure

Examples of EMU tasks

Some of these appropriate to an individual, some to a WG

Infrastructure

- Coordinate and edit a twice-yearly EMU newsletter
- Project manager

Technical

- Set up and run the data quality/validation process
- See what special imaging is needed for the Galactic Plane
- Develop source extraction for complex and extended sources
- Design and run the cross-ID algorithms

Collaborations

• E.g. Run the interface between EMU & eRosita, SkyMapper, WISE etc.

Science

• Next slide...

Examples of EMU science tasks

Some of these appropriate to an individual, some to a WG

- Prepare for science papers (outline of paper, identify first author, etc) for three phases:
 - 1. ASKAP early science
 - 2. EMU early science (after ~1000 sq deg)
 - 3. EMU final science (after survey completion)

Presumably (?) one WG for each science area, as before,

- recognise that WG chair can't be first author on every paper!
- Start by focusing on early science.
- Identify one task for each paper
 - first author is the task leader
- Should be generating papers NOW using other surveys

Discussion

- Will this work?
- Enough incentives what else?
- Suggestions for tasks
- Suggestions for science papers
- How can we generate papers <u>now</u>?
 - NB: 11 EMU journal papers so far!

Any volunteers for

- Project manager
- newsletter editor
- Web manager

Postdoc alert: several postdoc positions to be advertised in October AAS job register

YOU ARE NOW LEAVING THE MURCHISON RADIO-ASTRONOMY OBSERVATORY

THANK YOU FOR BEING RADIO QUIET

Conference alert: Sydney, December 2013: Astroinformatics 2013: Knowledge from data www.tinyurl.com/astroinfo

We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site.

CSIRO